Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 118(39)2021 09 28.
Article in English | MEDLINE | ID: mdl-34544856

ABSTRACT

The abundances of water and highly to moderately volatile elements in planets are considered critical to mantle convection, surface evolution processes, and habitability. From the first flyby space probes to the more recent "Perseverance" and "Tianwen-1" missions, "follow the water," and, more broadly, "volatiles," has been one of the key themes of martian exploration. Ratios of volatiles relative to refractory elements (e.g., K/Th, Rb/Sr) are consistent with a higher volatile content for Mars than for Earth, despite the contrasting present-day surface conditions of those bodies. This study presents K isotope data from a spectrum of martian lithologies as an isotopic tracer for comparing the inventories of highly and moderately volatile elements and compounds of planetary bodies. Here, we show that meteorites from Mars have systematically heavier K isotopic compositions than the bulk silicate Earth, implying a greater loss of K from Mars than from Earth. The average "bulk silicate" δ41K values of Earth, Moon, Mars, and the asteroid 4-Vesta correlate with surface gravity, the Mn/Na "volatility" ratio, and most notably, bulk planet H2O abundance. These relationships indicate that planetary volatile abundances result from variable volatile loss during accretionary growth in which larger mass bodies preferentially retain volatile elements over lower mass objects. There is likely a threshold on the size requirements of rocky (exo)planets to retain enough H2O to enable habitability and plate tectonics, with mass exceeding that of Mars.

2.
Nature ; 459(7250): 1118-21, 2009 Jun 25.
Article in English | MEDLINE | ID: mdl-19553997

ABSTRACT

The isotope (146)Sm undergoes alpha-decay to (142)Nd, with a half-life of 103 million years. Measurable variations in the (142)Nd/(144)Nd values of rocks resulting from Sm-Nd fractionation could therefore only have been produced within about 400 million years of the Solar System's formation (that is, when (146)Sm was extant). The (142)Nd/(144)Nd compositions of terrestrial rocks are accordingly a sensitive monitor of the main silicate differentiation events that took place in the early Earth. High (142)Nd/(144)Nd values measured in some Archaean rocks from Greenland hint at the existence of an early incompatible-element-depleted mantle. Here we present measurements of low (142)Nd/(144)Nd values in 1.48-gigayear-(Gyr)-old lithospheric mantle-derived alkaline rocks from the Khariar nepheline syenite complex in southeastern India. These data suggest that a reservoir that was relatively enriched in incompatible elements formed at least 4.2 Gyr ago and traces of its isotopic signature persisted within the lithospheric root of the Bastar craton until at least 1.48 Gyr ago. These low (142)Nd/(144)Nd compositions may represent a diluted signature of a Hadean (4 to 4.57 Gyr ago) enriched reservoir that is characterized by even lower values. That no evidence of the early depleted mantle has been observed in rocks younger than 3.6 Gyr (refs 3, 4, 7) implies that such domains had effectively mixed back into the convecting mantle by then. In contrast, some early enriched components apparently escaped this fate. Thus, the mantle sampled by magmatism since 3.6 Gyr ago may be biased towards a depleted composition that would be balanced by relatively more enriched reservoirs that are 'hidden' in Hadean crust, the D'' layer of the lowermost mantle or, as we propose here, also within the roots of old cratons.

3.
Science ; 310(5754): 1671-4, 2005 Dec 09.
Article in English | MEDLINE | ID: mdl-16308422

ABSTRACT

The use of hafnium-tungsten chronometry to date the Moon is hampered by cosmogenic tungsten-182 production mainly by neutron capture of tantalum-181 at the lunar surface. We report tungsten isotope data for lunar metals, which contain no 181Ta-derived cosmogenic 182W. The data reveal differences in indigenous 182W/184W of lunar mantle reservoirs, indicating crystallization of the lunar magma ocean 4.527 +/- 0.010 billion years ago. This age is consistent with the giant impact hypothesis and defines the completion of the major stage of Earth's accretion.

4.
Science ; 301(5629): 84-7, 2003 Jul 04.
Article in English | MEDLINE | ID: mdl-12843390

ABSTRACT

It has been assumed that Nb and Ta are not fractionated during differentiation processes on terrestrial planets and that both elements are lithophile. High-precision measurements of Nb/Ta and Zr/Hf reveal that Nb is moderately siderophile at high pressures. Nb/Ta values in the bulk silicate Earth (14.0 +/- 0.3) and the Moon (17.0 +/- 0.8) are below the chondritic ratio of 19.9 +/- 0.6, in contrast to Mars and asteroids. The lunar Nb/Ta constrains the mass fraction of impactor material in the Moon to less than 65%. Moreover, the Moon-forming impact can be linked in time with the final core-mantle equilibration on Earth 4.533 billion years ago.


Subject(s)
Earth, Planet , Evolution, Planetary , Moon , Geologic Sediments/chemistry , Hafnium/analysis , Mars , Meteoroids , Minor Planets , Niobium/analysis , Silicates , Tantalum/analysis , Zirconium/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...